原题链接在这里:
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [ [9,9,4], [6,6,8], [2,1,1]]
Return 4
[1, 2, 6, 9]
. Example 2:
nums = [ [3,4,5], [3,2,6], [2,2,1]]
Return 4
[3, 4, 5, 6]
. Moving diagonally is not allowed. dp[i][j] 表示 当前i, j 位置能都到的最大距离。
dp[i][j] 是通过 dfs 来选的,初始dp[i][j] 都是0, 终止条件是若是走到了一个不是0的位置,那么直接返回dp[x][y]. 可以避免重复计算. 若是dp[x][y]已经有值,说明这个点4个方向的最大值已经找到, 找到dp[x][y]的路径必定是比matrix[x][y]小的,直接返回dp[x][y] 再加上 1 就是之前位置的最大延展长度了。
若是当前位置是0, 就从上下左右四个方向dfs, 若是过了边界或者新位置matrix[x][j] <= 老位置matrix[i][j], 直接跳过continue.
不然len = 1 + dfs. 取四个方向最大的len作为dp[i][j].
Time Complexity: 对于每一个点都做dfs, dfs O(m*n). 所以一共 O(m*n * m*n) = O(m^2 * n^2).
Space: O(m*n).用了dp array.
AC Java:
1 public class Solution { 2 final int [][] fourD = { {-1, 0}, {1,0}, {0,-1}, {0,1}}; 3 4 public int longestIncreasingPath(int[][] matrix) { 5 if(matrix == null || matrix.length == 0 || matrix[0].length == 0){ 6 return 0; 7 } 8 int max = 1; 9 int m = matrix.length;10 int n = matrix[0].length;11 int [][] dp = new int[m][n];12 for(int i = 0; i=m || y<0 || y>=n || matrix[x][y] <= matrix[i][j]){30 continue;31 }32 int len = 1 + dfs(matrix, x, y, m, n, dp);33 max = Math.max(max, len);34 }35 dp[i][j] = max;36 return dp[i][j];37 }38 }